ru EN DE
Запланируйте демо

Предиктивное моделирование: как найти и удержать самых перспективных клиентов

Инсайты Май 08, 2020 Jordan Torpy 11 минут

Каждому бизнесу известно, что одни клиенты имеют большую ценность, чем другие. Это может зависеть от разных факторов, включая суммы покупок, чувствительность к ценам или удобство послепродажного обслуживания.

Каким бы ни было основание, успешными становятся те компании, которые как можно раньше идентифицируют клиентов с высокой ценностью, сосредотачиваются на повышении их лояльности и подбирают lookalike аудитории, идентичные данному сегменту.

Согласно Forrester, клиентоориентированный бизнес в 7 раз более предпочтителен для потребителей, в 5 раз чаще оказывается их любимой маркой, а также в 4 раза прибыльнее.

В динамично развивающемся ритейле прогнозирование ценности клиентов — это не роскошь, а важнейший фактор роста прибыли, требующий разумного инвестирования.

Вы скажете: «Я в деле, но что для этого нужно?»

Всё, что необходимо — это Платформа клиентских данных (CDP) с возможностью предиктивного моделирования поведения клиентов.

Данный материал расскажет, как правильно определять клиентов с самой высокой ценностью, делать их более лояльными и привлекать аналогичные аудитории в будущем.

Приступим.

Ключевые выводы

для BI аналитиков и CMO
  • Платформа клиентских данных (CDP) идентифицирует, организует и объединяет данные клиентов, направляя коммуникации со всех каналов в единый хаб.
  • Благодаря тщательно структурированным историческим данным предиктивное моделирование определяет тренды, выявляет риски и возможности, помогая принимать решения в масштабах всей компании.
  • Предиктивная поведенческая аналитика может быть использована для расчёта пожизненной ценности клиента (CLV) и определения наиболее активной аудитории. Она позволяет найти средства повышения лояльности и привлечения новых представителей платящего сегмента.

Что такое предиктивное моделирование поведения

Предиктивное моделирование берёт за основу исторические данные о клиентах для прогнозирования трендов и паттернов их поведения. Это работает как на индивидуальном уровне, так и на сегментах, и даже в масштабах всей базы. В свою очередь, полученные знания помогают разработать эффективную маркетинговую стратегию, в которую входит:

  • Прогнозирование вероятности и времени открытия клиентом рассылок с учётом наилучшего момента отправки каждого письма.
  • Указание на клиентов, склонных к выбытию и требующих специальных мер по удержанию.
  • Определение клиентов, готовых к покупке, с целью стимулировать их.

Подробнее читайте в нашем специальном материале: Предиктивный маркетинг для ускорения роста e-commerce.

В любом случае, всё укладывается в рамки стандартного процесса. Ваши клиентские данные выступают в качестве переменных, которые анализируются с помощью алгоритмов машинного обучения, а результатом является простой показатель, ранжирующий клиентов по их вероятным намерениям совершить то или иное действие, о котором ранее не было известно.

Что нужно для начала работы?

Преимущества предиктивного моделирования поведения

Когда данные уже подготовлены и объединены в рамках Единого пользовательского профиля (SCV), самое время для предиктивной аналитики. Ведь чем тщательнее структурированы и организованы данные, тем точнее будут прогнозы.

Примечание автора

“Не впадайте в иллюзии: отталкивайтесь от надёжной аналитики в принятии бизнес-решений”.

С внедрением поведенческой аналитики ритейл получает более глубокое понимание закономерностей продаж. Оно помогает точнее учитывать запросы потребителей. Основную работу берут на себя алгоритмы машинного обучения, обрабатывающие колоссальные объёмы данных.

Итоговый рейтинг помогает дифференцировать клиентов. Вы сможете выделить клиентов, приносящих больше всего прибыли, или тех, кто готов уйти. Вы выявите наиболее эффективные каналы коммуникации для каждого из них и не только. 

На основе комбинации прогнозов можно определить ценного клиента с высокой вероятностью ухода и проинвестировать в его удержание, что, безусловно, стоит усилий. Таким образом, при меньших трудозатратах и издержках на привлечение клиентов с высокой ценностью маркетологи могут существенно улучшать эффективность кампаний. Сэкономленные бюджеты можно направить в приоритетные проекты.

Инструменты для предиктивного моделирования поведения

Предиктивная поведенческая аналитика также помогает оценить пожизненную ценность конкретного клиента. Исторические данные и так всегда под рукой, а прогнозируемый CLV даёт важнейшие инсайты, включая то, кто в перспективе окажется клиентом с наибольшей ценностью и как привлечь аналогичных по поведению клиентов.

Как всё это реализовать при помощи предиктивного моделирования?

Предсказание CLV

Сколько денег клиент принесёт бизнесу?

Ответ кроется в прогнозировании пожизненной ценности клиента (CLV) на основе предиктивных моделей. Результаты можно использовать для идентификации, удержания и таргетирования клиентов с высокой ценностью.

Определение даёт дата саентист Жан-Рене Готье CLV — это общая прибыль компании за всё время взаимодействия с клиентом, включающая:

  • Стоимость привлечения, обслуживания и удержания клиента
  • Клиентские транзакции (количество и ценность)
  • Реферальный эффект (например, сарафанное радио)

В результате получается классификация всех клиентов по их потенциальной ценности.
Customer Lifetime Value Forecasting

Определяя черты и характер поведения клиентов с высоким CLV, ритейлеры понимают, как сосредоточить на них усилия, а также сколько стоит наладить взаимодействие с такими клиентами.

Предиктивное моделирование для повышения лояльности клиентов

Клиенты остаются с вами не просто так. С пониманием потребностей клиентов вам проще делать им индивидуальные предложения и создавать комфортные условия.

Возможно, это сработает, если рассчитать исторический CLV. Но ретроспективный анализ легко способен ввести в заблуждение, потому что он не учитывает текущие изменения на рынке и в компании.

Основанный на предиктивной поведенческой аналитике, предиктивный CLV — это новый уровень по сравнению с историческим CLV. На нём делаются выводы относительно будущих предпочтений с опорой на историю транзакций и средних сумм покупок.

Predictive CLV

Одни клиенты могут на первый взгляд показаться более перспективными благодаря своей истории покупок в прошлом. Но реально ценными, согласно предиктивному CLV, окажутся другие клиенты, у которых выше вероятность покупок в будущем.

Предиктивный CLV отлично подходит для выявления различий в поведении клиентов, в отличие от примитивных методов, часто оставляющих за скобками важные факторы. Благодаря единому пользовательскому профилю в CDP можно строить более продвинутые аналитические модели, которые помимо исторического и RFM-анализа учитывают сессии, открываемость рассылок и прочее.

Уделяя пристальное внимание длительности истории покупок (сколько времени прошло между первой и последней), частоте (с какой периодичностью делаются покупки) и сумме каждой покупки, мы можем идеально точно идентифицировать наиболее ценных клиентов, поддержать их и спрогнозировать тренды.

Frequency Purchase

Кроме того, построение более прочных взаимоотношений с клиентами (с индивидуальными предложениями, подарками, персонализации и не только) критически важно для повышения лояльности. Клиенты, довольные обслуживанием, в 3,5 раза чаще возвращаются за повторными покупками и в 5 раз чаще рекомендуют бренд друзьям и близким, чем те, кому сервис не понравился.

Продажи постоянным клиентам значительно эффективнее и прибыльнее, чем постоянный поиск новых. Фактически вместо привлечения всех подряд лучше таргетировать аудиторию, совпадающую по параметрам с вашими топ-клиентами. Вот где предиктивная аналитика вступает в игру.

Использование предиктивного моделирования для создания lookalike аудиторий

Используя инструмент сегментации профилей, вы также получаете возможность находить новые аудитории. Нами движут привычки, вследствие чего мы закономерно ищем похожих потенциальных клиентов, привлекая их и продавая по отработанным схемам.

Принцип Парето гласит, что 20% усилий лежат в основе 80% результатов. Или, имея в виду наши цели, 20% клиентов приносят 80% прибыли.

Predictive Behavioral Models

Когда мы сегментируем клиентов по ценности, мы можем легко определить VIP покупателей в числе верхних 20% и понять, что их характеризует. Полученные атрибуты можно использовать для сопоставления с профилями новых клиентов, чтобы помочь самым перспективным перейти на следующий уровень.

Заключение

Эффективное управление клиентскими данными критически важно для обеспечения качественного сервиса. Существуют инструменты, которые многие компании используют в рабочем порядке для достижения данной цели.

Платформа клиентских данных (CDP) идентифицирует, организует и объединяет данные клиентов, направляя коммуникации со всех каналов в единый хаб. Благодаря тщательно структурированным историческим данным предиктивное моделирование определяет тренды, выявляет риски и возможности, помогая принимать решения в масштабах всей компании.

Недавнее исследование Accenture выяснило, что 78% компаний считают AI конкурентным преимуществом и опасаются, что более технически подкованные конкуренты обойдут их. Благодаря правильным martech инструментам вы сами можете вырваться вперёд, оптимизируя инфраструктуру управления данными, используя предиктивные алгоритмы и структурируя клиентский путь в целях экономии времени и денег.

Чем может быть полезна Exponea

Чего смогла бы достичь ваша компания, будь у неё доступ к актуальным исчерпывающим данным для принятия решений? Именно это мы и предлагаем в рамках CDP.

Exponea Core интегрируется с вашими данными, преобразуя разрозненную информацию в централизованный хаб данных, позволяющий принимать эффективные решения в реальном времени.

Задействуя Предиктивный модуль, Exponea обеспечивает вас прогнозами в реальном времени. Предиктивная модель гарантирует: прогнозные данные (будущие заказы, открываемость писем, идеальное время отправки, расчётный CLV и другие) в едином пользовательском профиле всегда актуальны.

Хотите увидеть продукт в действии? Мы с радостью покажем вам, как Exponea справляется с самыми сложными задачами. Запланируйте демо.

Frequently Asked Questions

Что такое предиктивное моделирование поведения?

Мы руководствуемся привычками, когда речь идёт о наших потребительских предпочтениях. При помощи искусственного интеллекта и машинного обучения возможно отследить наши паттерны поведения. Благодаря этому ритейлеры могут разработать наилучшую маркетинговую стратегию.

Что такое предиктивные технологии?

Предиктивные технологии — это программное обеспечение, которое строит прогнозы и тренды на основе клиентских данных.

Как работают предиктивные модели?

Клиентские данные выступают в качестве переменных, которые анализируются с помощью алгоритмов машинного обучения. Результатом является простой показатель, ранжирующий клиентов по их вероятным намерениям совершить то или иное действие, о котором ранее не было известно (например, будущие покупки, оптимальное время отправки писем, вероятность ухода и т.д.).

Что лежит в основе предиктивных моделей?

Предиктивное моделирование поведения использует машинное обучение и искусственный интеллект для прогнозирования трендов, основываясь на таких объёмах данных, которые казались бы немыслимыми в случае с другими технологиями. Алгоритмы структурируют и обрабатывают исторические данные, находят паттерны и закономерности.

Почему предиктивное моделирование важно?

Предиктивное моделирование присваивает каждому клиенту рейтинг, использование которого повышает эффективность принятия решений.

Посмотрите короткое демо-видео Exponea
Узнайте о CDXP, которой пользуются лидеры B2С!

MISSGUIDED Victoria Beckham Desigual
ebuyer Agent Provocateur River Island

Мы используем cookies,

чтобы сделать нашу коммуникацию удобной для вас. Нажав на кнопку "Принять", вы соглашаетесь с нашей Политикой конфиденциальности. Вы также можете управлять настройками, нажав на "Управлять cookies".

Управлять cookies
Принять

Настройки cookies

Принять
Назад
X
We use cookies to optimize our communication and to enhance your customer experience. We also share information about how you use our website with our third parties including social plugins and analytics. You consent to our use of cookies if you continue to browse our website. You can opt out of our cookie use on the Do not Sell my Personal Information page. For more information please see our Privacy Policy.
Подписаться